26 research outputs found

    On Validating Closed-Loop Behaviour from Noisy Frequency-Response Measurements

    Get PDF
    It is shown how noisy closed-loop frequency-response measurements can be used to obtain pointwise in frequency bounds on the possible difference between the actual closed-loop system and the closed-loop comprising a nominal model of the plant and the stabilising controller. To this end, Vinnicombe's gap metric framework for robustness analysis plays a central role. Indeed, an optimisation problem and corresponding algorithm are proposed for estimating the chordal distance between the frequency responses of the nominal plant model and a plant that is consistent with the closed-loop data and a priori information, when projected onto the Riemann sphere

    Higher order sigma point filter: A new heuristic for nonlinear time series filtering

    Get PDF
    In this paper we present some new results related to the higher order sigma point filter (HOSPoF), introduced in [1] for filtering nonlinear multivariate time series. This paper makes two distinct contributions. Firstly, we propose a new algorithm to generate a discrete statistical distribution to match exactly a specified mean vector, a specified covariance matrix, the average of specified marginal skewness and the average of specified marginal kurtosis. Both the sigma points and the probability weights are given in closed-form and no numerical optimization is required. Combined with HOSPoF, this random sigma point generation algorithm provides a new method for generating proposal density which propagates the information about higher order moments. A numerical example on nonlinear, multivariate time series involving real financial market data demonstrates the utility of this new algorithm. Secondly, we show that HOSPoF achieves a higher order estimation accuracy as compared to UKF for smooth scalar nonlinearities. We believe that this new filter provides a new and powerful alternative heuristic to existing filtering algorithms and is useful especially in econometrics and in engineering applications

    A partially linearized sigma point filter for latent state estimation in nonlinear time series models

    Get PDF
    A new technique for the latent state estimation of a wide class of nonlinear time series models is proposed. In particular, we develop a partially linearized sigma point filter in which random samples of possible state values are generated at the prediction step using an exact moment matching algorithm and then a linear programming-based procedure is used in the update step of the state estimation. The effectiveness of the new ¯ltering procedure is assessed via a simulation example that deals with a highly nonlinear, multivariate time series representing an interest rate process

    Filtering and forecasting commodity futures prices under an HMM framework

    Get PDF
    We propose a model for the evolution of arbitrage-free futures prices under a regime-switching framework. The estimation of model parameters is carried out using the hidden Markov filtering algorithms. Comprehensive numerical experiments on real financial market data are provided to illustrate the effectiveness of our algorithm. In particular, the model is calibrated with data from heating oil futures and its forecasting performance as well as statistical validity is investigated. The proposed model is parsimonious, self-calibrating and can be very useful in predicting futures prices. © 2013 Elsevier B.V

    Risk-sensitive control for a class of nonlinear systems with multiplicative noise

    Get PDF
    In this paper, we consider the problem of optimal control for a class of nonlinear stochastic systems with multiplicative noise. The nonlinearity consists of quadratic terms in the state and control variables. The optimality criteria are of a risk-sensitive and generalised risk-sensitive type. The optimal control is found in an explicit closed-form by the completion of squares and the change of measure methods. As applications, we outline two special cases of our results. We show that a subset of the class of models which we consider leads to a generalised quadratic-affine term structure model (QATSM) for interest rates. We also demonstrate how our results lead to generalisation of exponential utility as a criterion in optimal investment. © 2013 Elsevier B.V. All rights reserved

    Electricity futures price models : Calibration and forecasting

    Get PDF
    A new one factor model with a random volatility parameter is presented in this paper for pricing of electricity futures contracts. It is shown that the model is more tractable than multi-factor jump diffusion models and yields an approximate closed-form pricing formula for the electricity futures prices. On real market data, it is shown that the performance of the new model compares favorably with two existing models in the literature, viz. a two factor jump diffusion model and its jump free version, i.e., a two factor linear Gaussian model, in terms of ability to predict one day ahead futures prices. Further, a multi-stage procedure is suggested and implemented for calibration of the two factor jump diffusion model, which alleviates the difficulty in calibration due to a large number of parameters and pricing formulae which involve numerical evaluation of integrals. We demonstrate the utility of our new model, as well as the utility of the calibration procedure for the existing two factor jump diffusion model, by model calibration and price forecasting experiments on three different futures price data sets from Nord pool electricity data. For the jump diffusion model, we also investigate empirically whether it performs better in terms of futures price prediction than a corresponding, jump-free linear Gaussian model. Finally, we investigate whether an explicit calibration of jump risk premium in the jump diffusion model adds value to the quality of futures price prediction. Our experiments do not yield any evidence that modelling jumps leads to a better price prediction in electricity markets

    Quadrature filters for one-step randomly delayed measurements

    Get PDF
    In this paper, two existing quadrature filters, viz., the Gauss–Hermite filter (GHF) and the sparse-grid Gauss–Hermite filter (SGHF) are extended to solve nonlinear filtering problems with one step randomly delayed measurements. The developed filters are applied to solve a maneuvering target tracking problem with one step randomly delayed measurements. Simulation results demonstrate the enhanced accuracy of the proposed delayed filters compared to the delayed cubature Kalman filter and delayed unscented Kalman filter

    Identification for control: deterministic algorithms and error bounds.

    Get PDF
    This thesis is not available on this repository until the author agrees to make it public. If you are the author of this thesis and would like to make your work openly available, please contact us: [email protected] Library can supply a digital copy for private research purposes; interested parties should submit the request form here: http://www.lib.cam.ac.uk/collections/departments/digital-content-unit/ordering-imagesPlease note that print copies of theses may be available for consultation in the Cambridge University Library's Manuscript reading room. Admission details are at http://www.lib.cam.ac.uk/collections/departments/manuscripts-university-archive

    Foundations of convexity

    No full text
    corecore